![]() |
Guia docente | |||||||||||||||||||||||||||||||||||||||
DATOS IDENTIFICATIVOS | 2023_24 | |||||||||||||||||||||||||||||||||||||||
Asignatura | ESTADÍSTICA III | Código | 00516027 | |||||||||||||||||||||||||||||||||||||
Enseñanza |
|
|||||||||||||||||||||||||||||||||||||||
Descriptores | Cr.totales | Tipo | Curso | Semestre | ||||||||||||||||||||||||||||||||||||
6 | Obligatoria | Tercero | Segundo |
|||||||||||||||||||||||||||||||||||||
Idioma |
|
|||||||||||||||||||||||||||||||||||||||
Prerrequisitos | ||||||||||||||||||||||||||||||||||||||||
Departamento | ECONOMIA Y ESTADISTICA |
|||||||||||||||||||||||||||||||||||||||
Responsable |
|
Correo-e | mevalp@unileon.es abgarg@unileon.es |
|||||||||||||||||||||||||||||||||||||
Profesores/as |
|
|||||||||||||||||||||||||||||||||||||||
Web | http:// | |||||||||||||||||||||||||||||||||||||||
Descripción general | ||||||||||||||||||||||||||||||||||||||||
Tribunales de Revisión |
|
|||||||||||||||||||||||||||||||||||||||
Competencias |
Código | |
A18901 | 516E20 Conocer y aplicar las principales técnicas exploratorias y predictivas multivariantes para el análisis de datos financieros, así como técnicas básicas de análisis demográfico. |
B5788 | 0516CG4 Tener la capacidad de recopilar e interpretar datos e informaciones sobre las que fundamentar sus conclusiones incluyendo, cuando sea preciso y pertinente, la reflexión sobre asuntos de índole social, científica o ética en el ámbito de su campo de estudio. |
B5794 | 0516T3 Habilidad para buscar, gestionar, sintetizar y analizar información económico-financiera. |
C3 | CMECES3 Que los estudiantes tengan la capacidad de reunir e interpretar datos relevantes (normalmente dentro de su área de estudio) para emitir juicios que incluyan una reflexión sobre temas relevantes de índole social, científica o ética. |
Resultados de aprendizaje |
Resultados | Competencias | ||
Identificar y utilizar la técnicas multivariantes exploratorias apropiadas para el análisis de datos financieros e interpretar los resultados de acuerdo con los objetivos de la investigación. | A18901 |
B5788 B5794 |
C3 |
Identificar y utilizar las técnicas predictivas multivariantes adecuadas para el análisis y pronóstico de datos financieros y saber interpretar los resultados. | A18901 |
B5788 B5794 |
C3 |
Aplicar los procesos estocásticos estudiados para la resolución de problemas en el ámbito de las finanzas. | A18901 |
B5788 B5794 |
C3 |
Saber aplicar estos métodos estadísticos con la ayuda del software apropiado. | A18901 |
B5788 B5794 |
C3 |
Manejar fuentes de información y las medidas básicas utilizadas en Demografía. | A18901 |
B5788 B5794 |
C3 |
Contenidos |
Bloque | Tema |
INTRODUCCIÓN | TEMA 1: INTRODUCCIÓN 1- Estadística multivariante. 2- Técnicas Estadísticas multivariantes. 3- Estadística Multivariante en el ámbito financiero. 4- Fuentes de datos estadísticos en el ámbito financiero. |
TÉCNICAS EXPLORATORIAS DE ANÁLISIS DE DATOS MULTIVARIANTE | TEMA 2. ANÁLISIS DE COMPONENTES PRINCIPALES 1. Introducción y Características generales 2. Modelo matemático y contrastes 3. Cálculo de las componentes principales 4. Representaciones gráficas e interpretación 5. Aplicaciones TEMA 3. ANÁLISIS DE CORRESPONDENCIAS 1. Introducción y Aspectos generales 2. Descripción y desarrollo del método 3. Representaciones gráficas 4. Análisis de correspondencias múltiples 5. Aplicaciones TEMA 4. ANÁLISIS CLUSTER 1. Introducción 2. Selección de variables 3. Criterios de distancia y similaridad 4. Técnicas de análisis cluster 5. Validación e interpretación de resultados 6. Aplicaciones |
TÉCNICAS PREDICTIVAS MULTIVARIANTES. | TEMA 5. ANÁLISIS DE REGRESIÓN 1. Introducción 2. Regresión Simple 3. Planteamiento y estimación del modelo de regresión múltiple 4. Evaluación e interpretación del modelo 5. Aplicaciones TEMA6. ANÁLISIS DISCRIMINANTE 1. Introducción 2. Planteamiento del modelo 3. Estimación de las funciones discriminantes 4. Evaluación e interpretación del modelo discriminante 5. Aplicaciones TEMA 7. ANÁLISIS DE REGRESIÓN LOGÍSTICA 1. Introducción 2. Planteamiento del modelo de regresión logística 3. Estimación del modelo 4. Evaluación e interpretación del modelo 5. Aplicaciones. |
INTRODUCCIÓN A LOS PROCESOS ESTOCÁSTICOS | TEMA 8. INTRODUCCIÓN A LOS PROCESOS ESTOCÁSTICOS 1. Introducción 2. Concepto y características de un proceso estocástico 3. Tipos de procesos estocásticos 4. Series temporales univariantes: metodología Box-Jenkins 5. Aplicaciones |
iNTRODUCCIÓN A LAS TÉCNICAS DE ANÁLISIS DEMOGRÁFICO | TEMA 9: INTRODUCCIÓN A LAS TÉCNICAS DE ANÁLISIS DEMOGRÁFICO 1.- Introducción a la demografía. 2.- Fuentes de información demográfica. 3.- Instrumentos básicos de análisis demográfico. 4.- Características de la población. 5.- Estudio de la mortalidad. 6. Aplicaciones |
Planificación |
Metodologías :: Pruebas | |||||||||
Horas en clase | Horas fuera de clase | Horas totales | |||||||
Sesión Magistral | 15 | 15 | 30 | ||||||
Dirigidas | 30 | 30 | 60 | ||||||
Supervisadas | 10 | 30 | 40 | ||||||
Autónomas | 15 | 0 | 15 | ||||||
Realización y exposición de trabajos. | 5 | 0 | 5 | ||||||
(*)Los datos que aparecen en la tabla de planificación són de carácter orientativo, considerando la heterogeneidad de los alumnos |
Metodologías |
descripción | |
Sesión Magistral | Presencial. Clases para la exposición de los contenidos teóricos de la asignatura de forma oral (con la ayuda de pizarra, cañón de proyección y materiales de apoyo disponibles en la Web). De forma previa a las clases, el alumno trabajará sobre los materiales, bibliografía o recursos que hayan sido recomendados por el profesor. De este modo, estará en disposición de participar de forma activa en las clases teóricas en que se aborden dichos contenidos. Posteriormente, la revisión de los materiales y, en su caso, la ampliación de los mismos a través de la consulta de bibliografía complementaria, ayudará al alumno a fijar y afianzar los conceptos adquiridos. |
Dirigidas | Además de la clase magistral, se proponen otros dos tipos de actividades dirigidas: - Prácticas con ordenador: sesiones presenciales en las que el profesor guiará a los alumnos en el manejo de software estadístico más apropiado para la aplicación de las distintas técnicas estadísticas. - Discusión de artículos, supuestos y casos prácticos previamente trabajados por los estudiantes. Para la correcta comprensión de la asignatura, el alumno perfeccionará sus destrezas tratando de resolver otros de los supuestos o casos prácticos propuestos. |
Supervisadas | Tutorías de grupo: Sesiones presenciales para la realización de determinadas actividades formativas, dirigidas por el profesor para la organización del trabajo autónomo y la resolución de dudas. |
Autónomas | Este tipo de actividades son necesarias para la correcta preparación de las actividades de evaluación. |
Tutorías |
|
|
Evaluación |
descripción | calificación | ||
Dirigidas | Participación activa en el desarrollo de la actividad docente, entendida como la realización de las tareas propuestas por el docente. | 5% | |
Sesión Magistral | Participación activa en el desarrollo de la actividad docente, entendida como la realización de las tareas propuestas por el docente. | 5% | |
Realización y exposición de trabajos. | Realización y Exposición de trabajos: - Trabajo dedicado a la evaluación de los Temas 1 a 4: 40% - Trabajo dedicado a la evaluación de los Temas 5 a 7: 40% - Trabajo dedicado a la evaluación de los Temas 8 y 9: 10 % |
90% | |
Otros comentarios y segunda convocatoria | |||
Para la Convocatoria Extraordinaria de Diciembre, el procedimiento de evaluación consistirá en la "Realización y exposición de trabajos", valorandose de la misma forma que se ha especificado en el Apartado 7. Evaluación de esta Guía Docente. En consecuencia, la nota máxima que podrá alcanzar un alumno que opte por esta convocatoria es 9. Durante el desarrollo de las pruebas no se permitirá manejar ningún material a excepción del que se especifique en la convocatoria de las mismas. Queda terminantemente prohibida la tenencia y el uso de dispositivos móviles y/o electrónicos durante la celebración de las pruebas. La simple tenencia de dichos dispositivos así como de apuntes, libros, carpetas o materiales diversos no autorizados durante las pruebas de evaluación, supondrá la retirada inmediata del examen, su expulsión del mismo y su calificación como suspenso, comunicándose la incidencia a la Autoridad Académica del Centro para que realice las actuaciones previstas en las Pautas de Actuación en los Supuestos de Plagio, Copia o Fraude en Exámenes o Pruebas de Evaluación , aprobadas por la Comisión Permanente del Consejo de Gobierno de 29 de enero de 2015. |
Fuentes de información |
Acceso a la Lista de lecturas de la asignatura |
Básica |
![]() |
Aldás, J., & Uriel, E. (2017), Análisis multivariado aplicado con R . Madrid:Ediciones Paraninfo. Ayala Calvo, J.C., Iturralde Jainaga, T., Rodríguez Castellanos, A. &(2002). Construcción de índices simplificados de riesgo país: Aproximación alos casos de Europa y América. Cuadernos de Gestión. Vol. 2. Nº 2. Babío, A., Gómez-Bezares, F., Madariaga, JoséA., & Santibañez, J. (2002), El perfil de riesgo del mercado defondos de inversión español. Actas del VI Foro de Finanzas, nº 109, Tercertrimestre, 25-43. Cea D'ancona, M.A. (2002), Análisis multivariable. Teoría y Práctica enla investigación social . Madrid: Editorial Síntesis. Díaz De Rada Iguzquiza, V. (2002), Técnicas de análisis multivariantepara la investigación social y comercial . Madrid: RA-MA Editorial. Escofier, B., & Pages, J. (1992), Análisis factoriales simples ymúltiples. Objetivos, métodos e interpretación . Bilbao: Ed. Servicioeditorial de la Universidad del País Vasco. Etxeberría, J. (1999), Regresión Múltiple . Madrid: La Muralla;Villares de la Reina (Salamanca): Hespérides. Everitt, B.S., &Dunn,G. (1991), Applied Multivariate Data Analysis . London: EdwardArnold. Garza García, J. de la, Morales Serrano, B.N.,& González Cavazos, B.A(2013), Análisis EstadísticoMultivariante. Un enfoque teórico y práctico . México: McGraw-Hill. Härdle, W., & Hlávka, Z. (2007). Multivariate Statistcs: Exercices and Solutions. New York: Springer. Husson, F.; Lê Jérome Pagès (2017). Exploratory Multivariate Analysis by Example Using R. CRC Press. London Pituch, Keenan A. &Stevens, James P. (2016). Applied multivariatestatistics for the social sciences . New York: Routledge. Latorre Llorens, L. (1992). Teoría del Riesgo y sus aplicaciones a laempresa aseguradora. Madrid: Ed.Mapfre, S.A. Lévy, J.-P., &Varela, J. (coord.) (2003), Análisis multivariable paralas ciencias sociales . Madrid: Pearson Educación. Quezada Lucio, N. (2016), Estadística con SPSS 22. Lima: Marcombo. Sarabia Alegría, J.M. (2007). Estadística Actuarial. Teoría yAplicaciones . Madrid: Pearson-Prentice Hall, S.A. Uriel,E., & Aldás, J. (2005), Análisis Multivariante Aplicado .Madrid: Ed. Thomson. DEMOGRAFÍA Hinde, Andrew (1998): Demographic Methods. Arnold. London. Preston, S.H., Heuveline, P. and Guillot, M. (2001):Demography. Measuring and Modeling Population Processes. Blackwell Publishers. Oxford. Reher, D.S. y Valero Lobo, A. (1995):Fuentes de información demográfica en España. Centro de Investigaciones Sociológicas. Madrid. Vinuesa, J. y Puga, D. (2007):Técnicas y ejercicios de demografía. INE. Madrid. Vinuesa, J. (Ed.) et al. (1997):Demografía. Análisis y proyecciones. Síntesis. Madrid. Weeks, J.R. (1993):Sociología de la población. Alianza Universidad. Madrid. |
|
Complementaria | |
Baxter, M.; Rennie, A. (1997), Financial calculus. London: Cambridge University Press. Booth, P. et al. (1999), Modern actuarial theory and practice. London. Chapman. Chatfield, C.; Collins, A. J. (1980), Introduction to Multivariate Analysis. London: Chapman & Hall. Daykin, C.D.; Pentikäinen, T.; Pesonen, M. (1994). Practical Risk Theory for Actuaries. London: Chapman & Hall Hall, S. G. (1994), Applied economic forecasting techniques. New York: Harvester Wheats Heaf. Júdez Asensio, L. (1989), Técnicas de análisis de datos multidimensionales. Madrid: Centro de Publicaciones. Ministerio de Agricultura, Pesca y Alimentación. Lebart, L.; Morineau, A.; Piron, M. (1995), Statistique exploratoire multidimensionnelle. Paris: Dunod. Ortega Martínez, E. (1990), Manual de Investigación Comercial. Madrid: Pirámide. Peña Sánchez De Rivera, D. (2002), Análisis de datos multivariantes. Madrid: McGraw-Hill. Sierra Bravo, R. (1994), Análisis Estadístico Multivariable. Teoría y Ejercicios. Madrid: Paraninfo. Tacq, J. (1997), Multivariate Analysis Techniques in Social Science. Research. London: Sage Publications. Zamora Saiz, A. (2020). An Introduction to Data Analysis in R [electronic resource]?: Hands-on Coding, Data Mining, Visualization and Statistics from Scratch (Quesada González, L. Hurtado Gil, & D. Mondéjar Ruiz, Eds.; 1st ed. 2020., p. 1 online resource (XV, 276 p. 99 illus., 81 illus. in color.)). Springer International Publishing?; Imprint Springer. https://doi.org/10.1007/978-3-030-48997-7. |
Recomendaciones |
Asignaturas que se recomienda haber cursado previamente | ||||
|